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INTRODUCTION 
 
 

The Pacific Islands Fisheries Science Center (PIFSC) and the Southeast Fisheries Science Center 
(SEFSC) held a workshop on the topic of estimating total and natural mortality rates in data-
limited stock assessment situations. The working group (WG) for this workshop consisted of Jon 
Brodziak, Dean Courtney, Joseph O’Malley and Benjamin Richards from the PIFSC and Todd 
Gedamke, Clay Porch, and John Walter from the SEFSC. The WG reviewed the survival 
estimation in non-equilibrium (SEINE) model which is based on the method of Gedamke and 
Hoenig (2006), and considered the application of this model for individual species.  In particular, 
example applications of the SEINE model were developed for blacktip grouper, bluespine 
unicornfish, orangespine unicornfish, and blue shark. The WG also discussed and developed 
several extensions of the SEINE methodology. These extensions included: (i)  multispecies 
extensions of the SEINE model; (ii) developing a random walk likelihood component for total 
mortality estimates; (iii) developing a simple Bayesian formulation of the SEINE model using a 
prior distribution for natural mortality under a two time-period application; (iv) developing an R-
based shell application to create input files and execute the SEINE model; and (v) developing a 
hierarchical Bayesian formulation of the SEINE model for three island areas. The WG also 
developed a simple Bayesian version of the Beverton-Holt (or single-period SEINE) model and 
considered a formulation of this model using mean weight instead of mean length observations. 
Other conceptual extensions of the SEINE model, including potential applications to multiple 
fleets or fishing gears, were discussed. 
 
The WG also considered the estimation of natural mortality rates by using one or more predictive 
models. In this application, the candidate models used life-history parameters or fitted empirical 
relationships to estimate natural mortality rate. The WG also considered an approach to rescale 
the adult natural mortality rate to estimate juvenile natural mortality rates based on allometric 
scaling of body mass.  
 
 

SEINE MODEL 
 
 

The survival estimation in non-equilibrium (SEINE) situations model was developed by 
Gedamke and Hoenig (2006). This model estimates total mortality (Z) from mean length data 
and is a generalization of the equilibrium estimator of Beverton and Holt (1957). The method is 
appealing in data-limited situations in that it only requires:  1) Length at which animals become 
fully vulnerable to the gear (Lc),   2) von Bertalanffy growth (K) and theoretical maximum length 
(Linf), and 3) the mean length of individuals above the Lc.  The SEINE model has been 
incorporated into the NOAA Fisheries Toolbox. The WG used the ADMB code from the 
Toolbox version of the model as the basis for developing extensions that included an approach to 
incorporate a random walk for estimating a time series of total mortality rates, a two-period 
Bayesian version of the model, an R-Shell application to run the Toolbox model from within the 
R language interpreter, and a hierarchical Bayes extension of the SEINE model. The WG also 
considered three fishery applications of the Toolbox model to investigate its utility in different 
situations.
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APPLICATIONS OF THE SEINE MODEL 
 

Guam Reef Fish Using Creel Survey Data: Blacktip Grouper and Bluespine Unicornfish 
 
The WG investigated the application of SEINE to estimate total mortality rates of reef fish from 
Guam using creel survey data. Total mortality of two species of Guam reef fish were estimated 
using the Toolbox version of SEINE.  The first, blacktip grouper (Epinephelus fasciatus) was 
selected because of the large sample size of the 1982-2011 boat-based, creel survey/bottomfish 
gear type.  The Akaike information criterion (AIC) values from the one-period SEINE grid-
search model only changed by 3.63 among all potential change years and the two-period model 
did not result in a better fit.  Thus, there was no evidence of a temporal change in total mortality 
and the WG recommended estimating Z using the Beverton and Holt equilibrium estimator.    
The second species, bluespine unicornfish (Naso unicornus), was of interest because the 1985-
2011 catch data originated from three different data sources. These were:  (i) boat-based creel 
survey/snorkel spear, (ii) shore-based creel survey/snorkel spear, and (iii) shore-based creel 
survey/hook and line.  Total mortality was estimated using one- and two-period SEINE models 
in the grid-search mode with runs for each data set.  The boat-based/snorkel spear data one-
period model AIC and negative log likelihood values, as well as residual plots, indicated a single 
change in mortality likely occurred sometime during 1999-2002.  Prior to this time period Z = 
0.45 and afterwards Z was reduced to 0.14.  In contrast, the shore-based/snorkel spear and shore-
based/hook and line one-period models did not indicate any changes in total mortality.  The 
shore-based/snorkel spear AIC values only changed by 2.53 among all potential change years 
and the shore-based/hook and line only changed by 1.93.  Two-period models did not result in an 
improvement in fit in any of the data sets as indicated by AIC and unrealistic Z estimates.  Based 
on this, the WG recommend the Bayesian two-period approach for the boat-based snorkel spear 
and the Beverton and Holt equilibrium estimator for the shore-based snorkel spear and hook and 
line data sets.   
 
 

Guam Reef Fish Using Visual Census Survey Data:   
Orangespine Unicornfish and Blacktip Grouper 

 
The WG investigated the application of SEINE to estimate total mortality rates of reef fish from 
Guam, using visual census survey data. Underwater visual census (UVC) data collected by the 
NOAA PIFSC Coral Reef Ecosystem Division (CRED) were used to estimate Z for two species 
of Guam reef fish using the GUI version of the SEINE model. These data were collected 
biennially from 2003 to 2010 using a combination of scuba diver belt transect and stationary 
point count methods. The orangespine unicornfish (Naso lituratus) and blacktip grouper 
(Epinephelus fasciatus) were chosen for this exercise based on large sample size, the existence of 
data on these species collected using other fishery dependent and fishery-independent methods, 
and potential management interest. 
 
At present, the CRED UVC data set is a brief time series and, while the methodology has now 
been standardized, data collection methods have evolved over time. In 2007, the primary data 
collection method was changed from the belt transect to the stationary point count. Hence, the 
data should be treated only as an example of fishery-independent time series. Single-period 
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analyses can still be carried out and may be useful for estimating current natural or fishing 
mortality without the time-varying component. Primary strengths of these data are that 
information exists for the full suite of shallow-water (0-30 m) coral reef fishes and has been 
collected around 52 islands, atolls, and reefs under jurisdiction of the United States in the 
tropical Pacific.  
 
The UVC survey data for the two species were gathered using the CRED data dissemination tool 
(http://www.pifsc.noaa.gov/cred/index.php). The output data were in CSV format and were input 
to the R language for generating the input data for SEINE.  Total mortality rates for both species 
were estimated for two-period SEINE models using the grid-search mode (Tables 1.1 and 1.2). 
For both species, the AIC values and negative log likelihood values, as well as residual plots, 
indicated that a change in mortality occurred around 2008. This finding is reasonable as it likely 
reflects the change in primary sampling methodology that occurred in 2007, rather than any 
fishery or environmentally induced change in mortality.  
 
 
 
Table 1.1.--SEINE grid search results for orangespine unicornfish using UVC survey data from 
Guam with the best-fitting model in boldface. 
 

Naso lituratus 

Case AIC -logLikelihood Z1 Z2 Sigma 
Change 
Year 1 

1 63.2437 27.6218 0.22139957 1.48409894 5.20778467 2003 

2 59.4362 25.7181 0.34563686 1.56345420 4.21489987 2004 

3 56.1950 24.0975 0.42934924 1.59046408 3.52035659 2005 

4 48.0100 20.0050 0.45581510 1.68969251 2.23409670 2006 

5 43.7807 17.8903 0.52742303 1.74997270 1.76628216 2007 

6 39.3306 15.6653 0.58507397 1.94834698 1.37940371 2008 

7 55.0659 23.5329 0.74663007 2.06872509 3.30631202 2009 

8 68.5288 30.2644 1.44616089 0.50003520 6.98506511 2010 
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Table 1.2.--SEINE grid search results for blacktip grouper using UVC survey data from Guam 
with the best-fitting model in boldface. 
 

Epinephelus fasciatus 

Case AIC -logLikelihood Z1 Z2 Sigma 
Change 
Year 1 

1 63.4591 27.7296 1.16652505 1.12878094 5.27049375 2003 

2 62.8786 27.4393 0.66014245 1.15580099 5.10322448 2004 

3 61.8632 26.9316 0.60455808 1.19801982 4.82331326 2005 

4 61.4689 26.7345 0.62753862 1.22604909 4.71881793 2006 

5 60.8211 26.4105 0.64094038 1.26645755 4.55199598 2007 

6 58.6534 25.3267 0.59820301 1.41873726 4.03553272 2008 

7 56.8351 24.4176 0.62306057 1.69772392 3.64779526 2009 

8 63.4601 27.7300 1.12918236 1.69771002 5.27077585 2010 

 
In summary, it appears that the CRED UVC data can be used to estimate total mortality. If 
estimates of natural mortality can also be developed, then one can also use the UVC data to 
estimate fishing mortality for reef fish species that do not have any fishery-dependent catch or 
size composition data. For species for which fishery-dependent data does exist, the CRED UVC 
data can serve as an important comparison data set. As the more UVC survey data are collected, 
these data will be increasingly useful for assessing species in coral reef assemblages. 
 

 
Pelagic Shark Using Observer Data from the Hawaii Longline Fishery: Blue Shark 

 
Blue shark Prionace glauca is the predominant shark species caught in the Hawaii-based pelagic 
longline fishery which targets swordfish Xiphias gladius in the shallow-set sector and bigeye 
tuna Thunnus obesus in the deep-set sector (Walsh et al., 2009). Blue shark catches in the 
Hawaii-based longline fishery have declined in response to the prohibition of shark finning in the 
year 2000 (Walsh et al., 2009). The SEINE Toolbox model was used to determine if total annual 
mortality of blue sharks in the deep-set, Hawaii-based pelagic longline fishery has also declined 
in response to the prohibition of shark finning. 
 
Blue shark length data were queried from the Hawaii longline observer data base (LODS). Data 
were limited to the deep-set fishery because the shallow-set fishery was closed during the years 
2000–2003 in response to management measures taken in 2000 and 2001 to protect sea turtles. 
The minimum cutoff length for computing mean length (Lc) was selected based on an 
examination of total length frequency of male and female blue sharks in the Hawaii-based 
longline fishery from 1994 to 2010 (Fig. 2.1). The mode in female length was about 175 cm TL 
and the mode in male length was about 190 cm TL (Fig. 2.1).  Lc was set as the mode in male 
length (190 cm TL). Annual mean lengths and sample sizes were calculated for sharks greater 
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than Lc (Lc = 190 cm TL) during the years 1994-2010 (Table 2.1) and input into the SEINE 
model.  
 
The Linf (Linf = 266 cm) and the K (K = 0.14) parameters for blue sharks in the North Pacific 
Ocean were obtained from Camhi et al., (2008) who cited Nakano (1994). Linf was reported as 
289.7 cm for males and 243.3 cm for females. K was reported as 0.129 for males and 0.144 for 
females. Mean Linf and K for males and females were input into the SEINE model. 
 
A single break in total mortality was assumed. A single run was conducted with one change year, 
an initial value of 2001, an initial value for sigma of 10, and an Lc of 190 cm TL. A grid search 
was run from 1994 to 2010, with one change year, a step size of 1 year, and an Lc of 190 cm TL. 
The best model was identified on the basis of AIC rules of thumb, i.e., using the differences in 
AIC values between the current model and the best-fitting model ∆AIC = AIC – min (AIC). 
Burnham and Anderson (2002) suggest that there is weak evidence to rule out the next best 
model if 2 < ∆AIC < 4, there is definite evidence to rule out the next best model if 4 < ∆AIC < 7, 
and there is strong evidence if 7 < ∆AIC < 10, or very strong evidence if 10 < ∆AIC. Sensitivity 
to Lc was examined by rerunning the SEINE grid search analysis over a range of Lc values from 
170 to 190 cm TL at 5 cm intervals. AIC rules of thumb were used to compare minimum AIC 
values among grid searches. 
 
The change year estimated by the single run was 1999.26. Total mortality estimated before the 
change year (Z1 = 0.55) was higher than total mortality estimated after the change year (Z2 = 
0.27), Sigma = 14.4, AIC = 146.8, Likelihood = 69.4.  
 
Minimum AIC (AIC = 147.0) from the grid search occurred for a break in natural mortality 
during the year 1999. Based on AIC rules of thumb, there was not sufficient evidence to rule out 
the next best model (∆AIC = 1.3) which had a break in natural mortality in 2000. In particular, 
there was definite evidence to rule out models with breaks in natural mortality in 1998 and 2001 
(∆AIC = 4.5 and ∆AIC = 6.1, respectively), and there was either strong or very strong evidence 
to rule out the remaining models. (Table 2.2, Fig. 3). 
 
The break year in natural mortality (1999) was not sensitive to the choice of Lc values from 170 
to 190 cm TL at 5-cm intervals (Table 2.3). Minimum AIC (AIC = 146.8) from the sensitivity 
analyses occurred for Lc of 185 cm TL and a break year of 1999 (Table 2.3). Based on AIC rules 
of thumb, there was no evidence to rule out the next best model (Lc of 190 cm TL and a break 
year of 1999) (∆AIC = 0.25) (Table 2.3). However, there was very strong evidence to rule out 
models with Lc  < 185 cm TL (Table 2.3).  
 
The SEINE Toolbox model requires the assumption that input mean lengths greater than Lc 
represent the length distribution of the population, i.e., there is no dome shape in the selectivity 
curve. Our assumption was that blue sharks greater than or equal to Lc (190 cm TL) were fully 
selected in the deep-set Hawaii-based pelagic longline fishery, and that the selectivity was 
asymptotic.  If the assumptions for the SEINE model are met, then the SEINE model results 
suggest that there was a break in blue shark total mortality about the same time as a prohibition 
in shark finning in the year 2000, and that total mortality of blue sharks decreased in the period 
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following the prohibition in shark finning in the waters fished by the deep-set, Hawaii-based 
pelagic longline fishery. 
 
Total blue shark mortality estimated in the SEINE model (Z1 = 0.55) from 1994 to the change 
year (1999) was consistent with estimated annual fishing mortality of adult blue sharks in the 
North Pacific from an integrated MULTIFAN-CL stock assessment (Kleiber et al., 2009). 
Region 4 in Kleiber et al. (2009) extended from 180˚ W to 130˚ W and 0˚ to 30˚ N and was 
assumed to have included waters fished by the deep-set, Hawaii-based pelagic longline fishery. 
Average annual adult fishing mortality in Region 4 during the years 1995 to 2002 was 
interpreted here from Figure 21 in Kleiber et al. (2009) as between    F = 0.2 and F = 0.25. The 
integrated MULTIFAN-CL stock assessment model assumed an annual natural mortality for blue 
sharks in the North Pacific of M = 0.2 (Kleiber et al., 2009).  
 
Sample sizes from the deep-set fishery for the SEINE model were very small in later years 
(Table 2.1). Observers measured sharks after they were caught and brought aboard fishing 
vessels. Prior to January 2006, the observer protocol called for as many intact sharks, tuna, 
swordfish, and billfish to be measured as possible, subject to time and safety constraints. As of 
February 2006, the observer protocol changed to measure every third fish brought aboard 
regardless of species (Walsh et al., 2009). Greater numbers of blue sharks are captured in the 
shallow-set fishery than the deep-set fishery (Walsh et al., 2009). Consequently, it may be 
worthwhile to repeat this analysis with data from the shallow-set fishery.  A problem is that the 
shallow-set fishery was closed as a result of management measures during the years 2000 – 
2003. Consequently, the SEINE model would need to be adapted to allow for missing years 
and/or blocks of years with constant mortality.  
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Table 2.1.--Mean length of blue shark catches > Lc (190 cm TL) and sample size (n) from the 
Hawaii-based pelagic longline fishery in the deep-set sector. 
 

Year Sector Mean Length (cm TL) n 

1994 Deep 204.4 156 

1995 Deep 204.9 108 

1996 Deep 207.6 200 

1997 Deep 205.4 132 

1998 Deep 204.7 124 

1999 Deep 203.8 100 

2000 Deep 205.7 177 

2001 Deep 206.1 157 

2002 Deep 211.0 64 

2003 Deep 211.1 29 

2004 Deep 212.8 23 

2005 Deep 211.6 37 

2006 Deep 213.1 14 

2007 Deep 213.5 10 

2008 Deep 195.0 1 

2010 Deep 213.1 7 
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Table 2.2.--SEINE grid search results for blue shark from 1994 to 2010, using one change year, a 
step size of one year, and an Lc value of 190 cm TL. Best-fitting model is listed in boldface. 

Case ΔAIC AIC 

- Log 

Likelihood Z1 Z2 Sigma 

Change 

Year 

1 15.00 162.03 77.02 0.59 0.46 22.45 1994 

2 14.65 161.69 76.84 0.57 0.45 22.23 1995 

3 13.33 160.37 76.18 0.57 0.43 21.38 1996 

4 9.80 156.83 74.41 0.57 0.38 19.27 1997 

5 4.46 151.49 71.75 0.57 0.33 16.47 1998 

6 0 147.03 69.52 0.56 0.28 14.44 1999 

7 1.28 148.31 70.16 0.54 0.24 15.00 2000 

8 6.11 153.14 72.57 0.53 0.21 17.28 2001 

9 10.45 157.48 74.74 0.53 0.18 19.64 2002 

10 13.26 160.29 76.15 0.52 0.15 21.33 2003 

11 15.54 162.58 77.29 0.52 0.14 22.82 2004 

12 16.99 164.02 78.01 0.51 0.15 23.81 2005 

13 17.56 164.59 78.29 0.51 0.15 24.21 2006 

14 17.69 164.72 78.36 0.51 0.04 24.30 2007 

15 17.69 164.72 78.36 0.51 0.00 24.30 2008 

16 17.94 164.97 78.49 0.51 0.00 24.48 2009 

17 18.13 165.16 78.58 0.51 0.50 24.62 2010 
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Table 2.3.--SEINE model results including ∆AIC, lowest AIC, and break year from the 
sensitivity analysis of based on rerunning the SEINE grid search analysis over a range of Lc 
values from 170 to 190 cm TL in 5 -cm intervals. Best-fitting model is listed in boldface. 
 

Lc ∆AIC AIC Break Year 

170 15.12 161.9 1999 

175 11.91 158.7 1999 

180 10.78 157.6 2000 

185 0 146.8 1999 

190 0.25 147.0 1999 
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Figure 2.1.--Length frequency of male and female blue shark from the Hawaii-based pelagic 
longline fishery during the years 1994-2010. The shallow-set sector targets swordfish, Xiphias 
gladius, and the deep-set sector targets bigeye tuna, Thunnus obesus. 
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Figure 2.2.--Observed and predicted length (cm TL) of blue shark > Lc (190 cm TL) from a 
single SEINE run with one change year, an initial value of 2001, and an initial value for sigma of 
10. Change year estimated from the single run was 1999. 
 

 

Figure 2.3.--AIC results of a grid search from 1994 to 2010, with one change year, a step size of 
one year, and an Lc value of 190 cm TL. 
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MULTISPECIES EXTENSION OF THE SEINE MODEL 
 

 
Recent advances in methodology allow the history of total mortality rate experienced by a 
population to be estimated from a time series of periodic (e.g., annual) observations on mean 
length in the population (i.e., SEINE model; Gedamke and Hoenig, 2006). This nonequilibrium 
formulation is a modification of the Beverton and Holt (1956, 1957) mean length mortality 
estimator which assume mortality has been constant for at least the life span of the species under 
consideration.    

During the first part of the workshop, the theoretical basis and mechanics of the models were 
discussed.  The importance of data evaluation and the selection of the length at full vulnerability 
were stressed and case studies were examined to illustrate the point. Time series of mean lengths 
for a few Pacific species (blacktip grouper, blue shark, unicornfish) and for the redtail parrotfish 
(Sparisoma chrysopterum) in St. Croix were examined.  Initially two different avenues were 
used to implement the model:  (i) The GUI version in the NMFS toolbox 
(http://nft.nefsc.noaa.gov/SEINE.html) and (ii)  case specific ADMB code developed by SEFSC 
staff.  A few modifications and minor corrections to the original code used in the GUI were made 
including: 

1) Generalization of the code used to calculate the number of estimated parameters. 
2) AIC equations were changed to the AICC value which includes a bias-correction for low 

sample sizes. 
3) Modification of number of observation calculations to account for years in which no 

samples were present.  
 

Additionally, a presentation and discussion of how the single species SEINE approach has been 
generalized (Todd Gedamke, John Hoenig, Clay Porch, unpublished manuscript) was held.  This 
generalization allows data on several species that are caught together to be analyzed 
simultaneously on the theory that changes in fishing effort are likely to affect several species.  
Thus, the estimation of times when mortality rate changed for one species borrows strength from 
data on other species that are caught together. Information theory (e.g., AIC) can be used to 
select among various possible models concerning the degree of synchrony (if any) of mortality 
changes in a suite of species. The WG discussed ways to most efficiently modify and generalize 
the ADMB code which was developed for specific application to the Caribbean species.   
 

 
Theoretical Basis and Modification for Multispecies Estimation 

The joint likelihood for N species is simply the product of the likelihoods for all of the species. 
Let each species, indexed by  n, have its own set of parameters Өn = {Zin, djn} where Zin is the 
vector of period-specific total mortality rates for species n, and djn is the vector of times at which 
mortality rate changes for species n, with i = 1, 2, …, I, and j = 1, 2, …, I-1. We can then 
envision a suite of models depending on the patterns of mortality across species. 

 

 

http://nft.nefsc.noaa.gov/SEINE.html
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Single-species Model (SEINE model) 

In this scenario, what happens to one species is not reflected in what happens in other species. 
For example, fishers may target certain species and avoid others so that changes in total mortality 
for one species are independent of what happens to another species. In this case, the likelihood 
for each species can be maximized independently because there are no parameters in common.  

Multispecies Model 1 

In this scenario, changes in fishing effort affect all species in the complex being considered; 
however, the magnitudes of the changes in mortality rate are independent. Thus, all species have 
a common set of times at which mortality rate changed, i.e., djn = djn’ for all periods j and all 
pairs of species n and n’. 

Multispecies Model 2  

Here, all species experience synchronous changes in mortality (i.e., changes occur at the same 
times, as in Multispecies Model 1) but, additionally, the proportional change in fishing mortality 
is the same for all species. To use this model, the total instantaneous mortality rate per year, Z, is 
broken down into its components fishing mortality, F, and natural mortality, M: 

 Z F M= +   (1) 

Then, an increase in fishing effort would cause the fishing mortality to change by a factor δ to 

 Z F Mδ= ⋅ +  (2) 

In Model 2, the factor δ for a given change point in time is assumed to be the same for all species 
in the complex. Everywhere in the model that a Z parameter occurs, equation (2) is substituted. 
The values of M are obtained external to the analysis of the mean length data. (In the appendix 
we show that the results are not very sensitive to errors in the specification of natural mortality.) 
Thus, the initial fishing mortality rate for each species is estimated and the common times of 
change and the common proportional changes are estimated. 
 
 

Number of Parameters 
 
Under the single-species model, there are four parameters when we estimate two mortality rates, 
one change point, and one variance σ2. For N species, there are 4N parameters. Addition of 
another change point and another mortality rate adds two parameters per species. Under 
multispecies model 1, there are 2N mortality rates, 1 change point and N variances. Thus, there 
are 3N+1 parameters. For multispecies model 2, there are N initial mortality rates, N variances, I-
1  change points, and I-1 proportional changes in mortality rate for a total of 2(N + I – 1) 
parameters (Table 3.1). 
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Table 3.1.--Number of parameters for three models when there are N species being analyzed with 
I time periods and I-1 change points. 

       model      

case   single-species model multispecies model 1 multispecies model 2 

1 change point and      4N                               3N + 1                         2N + 2 
2 periods         

For each additional     4                                  3                                  2 
species, add          

For each additional     2N                                N + 1                          2     
change point, add         

 
I -1 change points       2IN                               IN + I + N + 1            2(N + I – 1) 
and I periods      

             
 

 

RANDOM WALK EXTENSION OF SEINE MODEL 

 
A simple “random walk” structure was added to penalize deviations in the total mortality rate Z 
from one time period t to the next: 

 1
t

t tZ Z eδ+ = ⋅  (3) 

 ( )2~ 0,t ZNδ σ  (4) 

where δt is a normally distributed random variable with mean 0 and standard deviation σz. The 
subscript t denotes a block of one or more years. The corresponding negative log-prior is added 
to the negative log-likelihood to create the penalized objective function (where T is the total 
number of time blocks).  
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This negative log-prior is 

 ( )( ) ( ) ( ) ( ) ( )( )22 2
1

1
log 0.5 log 2 log log log

T

Z Z t t
t

P T T Z Zδ π σ σ −
+

=

 − = ⋅ + ⋅ + − 
 

∑  (5) 

Note that low values of σz (say 0.01) tend to inhibit departures from constant Z, and very high 
values tend to allow a near-perfect fit to the data at the expense of having effectively too many 
parameters. To the extent that the penalty term can be thought of as ‘data’, the AIC criteria can 
be used to guide the most parsimonious choice for σz. In practice, the random walk structure may 
be more useful to identify periods when Z may have changed or as a diagnostic tool to help 
identify outliers (mean length values that are implausible with reasonable variations in Z).   

The random walk structure was applied to three examples (Fig. 4.1): Northwest Atlantic 
goosefish (Lophius americanus), Pacific Islands blacktip grouper (Epinephelus fasciatus) and 
Caribbean redtail parrotfish (Sparisoma chrysopterum). In the case of goosefish, the mean length 
observations were obtained from large samples collected since 1963 and there are consistent 
increasing and decreasing trends. The AIC criterion suggests that a small value of σz (0.01) is 
much less appropriate than a larger value (0.5), thus implying that the observed trends in mean 
length are likely a result of real changes in the mortality rate. In contrast, the data for blacktip 
grouper fluctuated substantially from year to year with little long-term trend. Not surprisingly, 
the AIC criteria favor a lower value of σz (0.01), implying that there is little evidence that Z has 
changed through time and that the variation in mean lengths is attributable to other causes (low 
sample sizes and high sampling variability).  

The example for redtail parrot fish demonstrates a case where the random walk is useful in a 
diagnostic sense, but the naïve use of AIC to guide the choice of σz  could be misleading.  In this 
case, there is an apparent trend in mean lengths that results in a clear decreasing trend in Z with 
time when the value of σz is moderate to large (0.1 to 0.5). Nevertheless, the high year to year 
variability in mean lengths contributes to produce the lowest AIC when σz  is small (0.01).  This 
apparent disconnect results because the random walk model in this specific example is allowing 
annual variations in Z. When instead the random walk was applied to two time blocks (before 
1995, 1995-2010), then the AIC criteria supported a larger σz. In other words, the data do not 
provide evidence for annual changes in Z, but do provide evidence for a change in Z after 1994. 
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Figure 4.1.--Random walk estimates of total mortality rate (Z) with three different values of σz 
(green = 0.01, brown = 0.1, black = 0.5) for each of three species.  
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SIMPLE BAYES EXTENSION OF SEINE MODEL 
 
 

The WG discussed the potential application of a Bayesian formulation of the SEINE model. Jon 
Brodziak developed some WinBUGS code for a two-period SEINE model with a fixed change 
point (Appendix 1) for a hypothetical application to some blacktip grouper mean length data 
collected from creel surveys in Guam. This example application showed how to set up priors for 
key SEINE model parameters in WinBUGS. The WG noted that the inclusion of prior 
distributions for growth parameters or other model parameters provided a useful way to 
characterize uncertainty in these quantities in the estimation of total mortality rate from changes 
in observed mean lengths. A nominal estimate of natural mortality rate of blacktip grouper was 
developed from Hoenig’s (1983) predictive regression for fish. This estimate of M = 0.22 was 
used as a mean for a prior with an assumed CV of 30% in the WinBUGS model. The M 
parameter was then included in the Bayesian formulation of the SEINE model. This made it 
possible to directly estimate the distribution of fishing mortality rate from the estimated posterior 
distribution of total mortality rate (Z) as F = Z – M. The Bayesian formulation of SEINE was 
considered to be potentially useful by the WG and it was recommended that this initial version 
be generalized to select change points using goodness-of-fit criteria, perhaps using a more 
flexible programming language such as Python (http://www.python.org/). 
 
 

R-SHELL APPLICATION TO RUN THE SEINE MODEL 
 
 

It became clear to the WG that the development of an R code to act as both a data evaluation tool 
and a “shell” to call the ADMB codes (including the random walk modification developed by 
Clay Porch and described elsewhere in this document) was to be a high priority. John Walter 
made substantial progress to this end and a beta version is in development which does (or will 
do) the following: 
 

1)  Creates annual histograms of length frequency data (Fig. 5.1) to evaluate and select 
the length at full vulnerability (Lc). 

2) Creates bubble plots of mean lengths (Fig. 5.2) of individuals above the Lc from step 
1.  

3) Calls ADMB codes to do the following analyses: 
a. A single-period SEINE, or Beverton-Holt equilibrium mean-length mortality 

estimate (written during workshop). 
b. Multiple-years-of-change SEINE model (at the conclusion of the meeting a 

single year of change was completed) which includes a grid search over years 
of change generating a likelihood profile (Fig. 5.3) for comparison to (a) 
above and residual diagnostics (Fig. 5.4).  At low sample sizes, or when little 
contrast is apparent, the model can be sensitive to the starting guess for year 
of change. 

c. Sensitivity analysis to the selection Lc. 

http://www.python.org/
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d. Implementation of random walk modification to the SEINE model.  This 
includes options for time-blocking and a sensitivity analysis of the sigma 
penalty (described elsewhere). 

e. In addition, an excel spreadsheet template was developed to visualize and 
evaluate results. Ideally, once completed this step will be included in the R 
code.   

 
It was expected that this code would be heavily utilized in the Caribbean SEDAR meeting to be 
held in August 2011 where additional modifications were likely to occur.  The WG also 
considered an illustrative example of the R-shell for running the SEINE model on redtail 
parrotfish from St. Croix.  In this example, fitting a single-change SEINE model for redtail 
parrotfish (Table 5.1) resulted in an initial Z estimated to be Z1 = 1.59 (σ = 0.065) and a second 
Z estimated to be Z2 = 0.82 (σ = 0.104).  
 
 
Table 5.1.--Results of fitting a single change SEINE model for redtail parrotfish.  
 

AIC LLIKE yinit1 Z1 Z2 Sigma ChangeYear1 Z1_std Z2_std Sigma_std 
117.758 53.7678 1996 1.58568 0.818875 37.5553 1996 0.065368 0.10345 5.5372 
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Figure 5.1.--Histogram of length frequencies by year for redtail parrotfish from St. Croix. 
 

 
Figure 5.2.--Observed mean lengths for redtail parrotfish from St. Croix. Bubbles are 
proportional to sample size above Lc  = 262 mm. Solid blue line is a lowess fit. 
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Figure 5.3.--Testing null hypothesis of no change in Z for redtail parrotfish. In this case, there is 
strong evidence to reject the null hypothesis of no change for years 1991-1999 as there is a 
reduction in AIC of 5 units or greater. 
 

 
 
 
Figure 5.4.--Observed and fitted mean lengths for redtail parrotfish. 
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HIERARCHICAL BAYES EXTENSION OF THE SEINE MODEL 
 
 

The WG considered the idea of using hierarchical Bayes models for data-limited stock-
assessment situations. Hierarchical data are ubiquitous in fisheries applications where 
measurement occurs at different levels of aggregation, e.g., we collect measurements of 
individual fish which live in different island habitats. When this occurs, statistical analyses often 
assume that these island groups belong to entirely different populations or ignore the aggregate 
information entirely. Hierarchical Bayes models provide a means of pooling the information for 
the different island groups without assuming that they belong to precisely the same population. 
Jon Brodziak presented an example of a hierarchical Bayes production model that was developed 
for the Hawaii bottomfish stock assessment (Brodziak et al., 2011a). This model included a time-
varying intrinsic growth rate where the time-variable fishing year was the hierarchy. The model 
was coded in the WinBUGS programming language. Jon used the WinBUGS code to describe 
the structure of a hierarchical Bayes model and how to include a hyperprior on a key model 
parameter. In this case, the hyperprior represented the aggregated ecosystem effect on time-
varying production for the Hawaii bottomfish complex. 
 
The WG also briefly considered an initial Bayesian formulation of the SEINE model that 
included a hierarchical prior on the total mortality rates for the two-period model. The 
hierarchical structure in this case was the two time periods, and the prior distribution for the total 
mortality rate for each time period was assigned a mean value based on a hyperprior assigned for 
the entire time horizon. Results of this hierarchical model were compared to the results of a 
simpler Bayesian model that assumed that the priors for total mortality rate in each period were 
equal. The comparison showed that including the hyperprior structure allowed for greater 
variability in the estimates of total mortality. This effect was based on the fact that the means of 
the prior distributions for the two time periods were allowed to differ with the hierarchical 
structuring. Overall, it was thought that the development of hierarchical Bayes extensions of the 
SEINE model would provide more flexibility in fitting models with stochasticity at multiple 
levels in space or time (e.g., Clark, 2005). 
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Figure 6.1.--Diagram of conceptual structure of a Hierarchical Bayes model for estimating total 
mortality of a fish population based on life history parameters and observed length distributions. 
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MEAN WEIGHT EXTENSION OF BEVERTON-HOLT MODEL 
 
 

The Beverton-Holt equilibrium estimator of total mortality based on observed mean length 
expresses total mortality as a function of von Bertalanffy growth parameters,  observed mean 
length, and the critical length Lc as 

 
( )inf

c

K L L
Z

L L
−

=
−

 (6) 

If the mean weight at length of the population is based on the allometric equation bW a L= ⋅ , then 
the corresponding equilibrium estimator of total mortality based on observed mean weight (W ) 
can be expressed as 

 
( ) ( ) ( )( )( )

( )

inf 0exp 1 exp

1 exp
c

bb

t

c

a L Zt K t t dt
W

Z t
Z

∞

⋅ − − − −

=
− ⋅

∫
 (7) 

where tc is the age corresponding to Lc. The value of Z corresponding the observed mean weight 
W  can be solved for numerically using this equation; however, this was not pursued during the 
WG meeting. 
 
 

PREDICTIVE MODELS TO ESTIMATE NATURAL MORTALITY RATES 
 
 

The WG considered the estimation of natural mortality rates based on life history parameters and 
empirical approaches (e.g., Brodziak et al., 2011b).  Jon Brodziak described a number of 
methods to estimate natural mortality rate based on life history parameters with an example 
application to North Pacific swordfish. These methods included:  Lorenzen (1996), Peterson and 
Wroblewski (1984), Jensen (1996), Chen and Watanabe (1989),  Pauly (1980), Alverson and 
Carney (1975), and Hoenig (1983). It was noted that several of these estimators of M produced 
consistent estimates of M for swordfish. An arithmetic average of the consistent estimators was 
used for swordfish in the stock assessment application. The WG discussed the merits of using 
multiple estimators to characterize M. The fact that several of the estimators used the same or 
similar life history parameters indicated that there was likely to be some correlation among the 
M estimates. The WG discussed assigning the estimators to categories based on the type of life-
history parameters required and assuming a fixed proportion or weighting factor for each 
category. That is, if there were 4 categories of life-history parameters then the weighting factor 
for each category would be ¼ for the averaging of M estimates across categories. For example, 
one could assign all of the estimators that were only based on expected life span to a single 
category and all of the estimators that depended only on the von Bertalanffy K parameter to 
another category. This approach was not applied in the workshop, however.   
 
Clay Porch made a presentation to the WG regarding the estimation of natural mortality rates at 
age based on the scaling of natural mortality rate with body mass in Lorenzen (1996). This 
approach has been successfully been applied to some stocks in the Southeast region.  



24 
 

John Walter made a presentation on the estimation of natural mortality rate for yellowedge 
grouper in the Southeast region. His presentation showed how multiple model-based estimates of 
natural mortality rate were developed to support a catch curve-based estimate based on data from 
a period of little or no fishing mortality for the stock. The information showed how the use of 
multiple predictors could help to support the estimate of M used in a stock assessment. 
 
 

SUMMARY 
 
 

The workshop provided a good opportunity for collaborative research on estimation of total 
mortality rate using the SEINE modeling approach when stock assessment data are limited but 
growth parameters and mean length data are available. The WG made progress on several fronts 
including three successful illustrative applications to mean length data from fishery-dependent 
creel surveys, fishery-independent visual census data, and fishery dependent observer data.  
Progress was also made on several types of extensions of the SEINE model, although further 
work would be needed to make these extensions available for direct stock-assessment 
application. 
 
The multispecies extensions of the SEINE model was expected to improve the application of the 
approach to fisheries where multiple species are harvested with the same fishing gear. This 
extension allowed the model estimates to use multiple time series of mean-length data to resolve 
change points in total mortality rates.  
 
The random walk extension of the SEINE model provided a useful framework to incorporate 
time-varying parameters. It was also thought that this extension could be used to help identify 
time periods when total mortality was changing and also to identify mean length observations 
that were outliers. 
 
The simple Bayes extension of the SEINE model provided a means to explicitly incorporate 
uncertainty about model parameters through parameter priors. This extension can also provide 
direct probabilistic results for key parameters for risk analyses. 
 
The R-Shell extension provided a flexible means to explore and visualize the input data and 
output model results of SEINE model runs. It was also expected that this extension would help to 
streamline the set of analyses needed to successfully use the SEINE model in a stock assessment 
workshop setting where multiple model configurations may need to be considered. 
 
The hierarchical Bayes extension of the SEINE model provided an opportunity to include more 
realistic treatment of parameter uncertainty through the use of hyperpriors for different structural 
levels, which could include stochasticity for spatial or temporal effects.  
 
Overall, the WG concluded that the workshop was a useful modeling exercise and that it would 
be beneficial to hold follow-up meetings to continue this work to improve the set of assessment 
tools available for data-limited situations. 
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Appendix 1. WinBUGS cod to fit a two-period SEINE model with a fixed change point to hypothetical 

blacktip grouper data from creel surveys in waters off Guam. 

################################################################################## 

# Program GH_ZLEN2 implements the Gedamke-Hoenig mean length-based Z estimator with 2 periods 

# and a fixed change period input by the user. Model is fit to hypothetical creel survey data for 

# blacktip grouper from Guam 

# Jon Brodziak, PIFSC, July 2011 

################################################################################## 

model gh_zlen2 

{ 

################################################################################## 

# PRIOR DISTRIBUTIONS 

################################################################################## 

# Lognormal prior for VB growth parameter K 

#(P1)############################################################################# 

K_Prior_Precision <- 1.0/log(1.0+CV_K*CV_K) 

K_Prior_Avg <- log(Target_K_Prior_Avg) - (0.5/K_Prior_Precision) 

K ~ dlnorm(K_Prior_Avg,K_Prior_Precision)I(0.001,200.0) 

# Lognormal prior for VB growth parameter LINF 

#(P2)############################################################################# 

LINF_Prior_Precision <- 1.0/log(1.0+CV_LINF*CV_LINF) 

LINF_Prior_Avg <- log(Target_LINF_Prior_Avg) - (0.5/LINF_Prior_Precision) 

LINF ~ dlnorm(LINF_Prior_Avg,LINF_Prior_Precision)I(0.01,100000.0) 

# Normal prior for VB growth parameter T0 

#(P3)############################################################################# 

T0_Std <- CV_T0*T0_Prior_Avg 

T0_Prior_Precision <- 1.0/(T0_Std*T0_Std) 
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T0 ~ dnorm(T0_Prior_Avg,T0_Prior_Precision) 

# Lognormal prior for Z1 

#(P4)############################################################################# 

Z1_Prior_Precision <- 1.0/log(1.0+CV_Z1*CV_Z1) 

Z1_Prior_Avg <- log(Target_Z1_Prior_Avg) - (0.5/Z1_Prior_Precision) 

Z1 ~ dlnorm(Z1_Prior_Avg,Z1_Prior_Precision)I(0.001,200.0) 

# Lognormal prior for Z2 

#(P5)############################################################################# 

Z2_Prior_Precision <- 1.0/log(1.0+CV_Z2*CV_Z2) 

Z2_Prior_Avg <- log(Target_Z2_Prior_Avg) - (0.5/Z2_Prior_Precision) 

Z2 ~ dlnorm(Z2_Prior_Avg,Z2_Prior_Precision)I(0.001,200.0) 

# Normal prior for observation error variance, tau2 

#(P6)############################################################################# 

tau2   ~ dnorm(mean_tau2,precision_tau2) 

 

################################################################################## 

# SAMPLE LIKELIHOOD 

################################################################################## 

# Observed mean length sample likelihood period 1 

#(L1)############################################################################# 

for (i in 1:changeyear) { 

     predicted_mean_length[i] <- LINF - Z1*(LINF-LCRIT)/(Z1+K) 

     sample_precision[i] <- n_length[i]/tau2 

     mean_length[i] ~ dnorm(predicted_mean_length[i],sample_precision[i]) 

     residual[i] <- mean_length[i] - (LINF - Z1*(LINF-LCRIT)/(Z1+K)) 

     } 

# Observed mean length sample likelihood period 2 

#(L2)############################################################################# 
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for (d in (changeyear+1):nsample) { 

     predicted_mean_length[d] <- LINF - Z1*Z2*(LINF-LCRIT)*(Z1+K+(Z2-Z1)*exp(-
(Z2+K)*d))/((Z1+K)*(Z2+K)*(Z1+(Z2-Z1)*exp(-Z2*d))) 

     sample_precision[d] <- n_length[d]/tau2 

     mean_length[d] ~ dnorm(predicted_mean_length[d],sample_precision[d]) 

     residual[d] <- mean_length[d] - predicted_mean_length[d] 

     } 

# END OF CODE 

################################################################################### 

} 

 

#####################################################################################
# DATA 

#####################################################################################
list( 

LCRIT = 150.0, 

nsample = 29, 

changeyear = 15, 

mean_length = 
c(244.3181818,229.9795918,207.8571429,205.5944056,200.1724138,229.0701754,242.4421053,227.09
27835,241.5934066,225.6947368,235.4615385,230.4215686,233.5,235.4216216,241.208,238.2708333,
226.4011976,225.1594203,212.0285714,227.754902,224.3717949,215.7313433,231.9375,229.6111111,
223.8085106,220.5438596,222.0877193,222.578125,227.5783133,285), 

n_length = 
c(44,49,28,143,29,57,190,97,91,95,91,102,130,185,125,96,167,138,70,102,78,67,48,54,47,57,57,64,83), 

mean_tau2 = 100.0, 

precision_tau2 = 0.001, 

Target_K_Prior_Avg = 0.26, 

CV_K = 0.1, 

Target_LINF_Prior_Avg = 414.0, 

CV_LINF = 0.10, 
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T0_Prior_Avg= -0.054, 

CV_T0 = 0.10, 

Target_Z1_Prior_Avg = 0.5, 

CV_Z1 = 0.3, 

Target_Z2_Prior_Avg = 0.5, 

CV_Z2 = 0.3 

) 

 

# INIT1 

##################################################################################### 

list( 

K = 0.26, 

LINF = 414.0, 

T0 = -0.054, 

Z1 = 0.5, 

Z2=0.5, 

tau2=100 

) 

# End of WinBUGS code 
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Table A.1. Results of GH_ZLEN2 run for blacktip grouper in Guam. The node labeled “residual[k]” 

represents the observed minus predicted mean length in year k while the node labeled “tau2” is the 

observation error variance. 

 node   mean  sd  MC error 2.5% 10.0% median 90.0% 97.5% start sample 

 Z1  0.5026 0.07995 0.003945 0.363 0.404 0.4968 0.6068 0.679 10000 45000 

 Z2  0.5612 0.0866 0.004249 0.4099 0.4548 0.555 0.6739 0.753 10000 45000 

 residual[1] 13.13 0.5971 0.002793 11.96 12.36 13.12 13.89 14.29 10000 45000 

 residual[2] -1.213 0.5971 0.002793 -2.382 -1.976 -1.214 -0.4457 -0.04391 10000 45000 

 residual[3] -23.34 0.5971 0.002793 -24.5 -24.1 -23.34 -22.57 -22.17 10000 45000 

 residual[4] -25.6 0.5971 0.002793 -26.77 -26.36 -25.6 -24.83 -24.43 10000 45000 

 residual[5] -31.02 0.5971 0.002793 -32.19 -31.78 -31.02 -30.25 -29.85 10000 45000 

 residual[6] -2.122 0.5971 0.002793 -3.291 -2.886 -2.124 -1.355 -0.9533 10000 45000 

 residual[7] 11.25 0.5971 0.002793 10.08 10.49 11.25 12.02 12.42 10000 45000 

 residual[8] -4.099 0.5971 0.002793 -5.269 -4.863 -4.101 -3.332 -2.931 10000 45000 

 residual[9] 10.4 0.5971 0.002793 9.232 9.638 10.4 11.17 11.57 10000 45000 

 residual[10] -5.497 0.5971 0.002793 -6.667 -6.261 -5.499 -4.731 -4.329 10000 45000 

 residual[11] 4.269 0.5971 0.002793 3.1 3.506 4.268 5.036 5.438 10000 45000 

 residual[12] -0.7706 0.5971 0.002793 -1.94 -1.534 -0.7724 -0.0037 0.3981 10000 45000 

 residual[13] 2.308 0.5971 0.002793 1.139 1.544 2.306 3.075 3.476 10000 45000 

 residual[14] 4.229 0.5971 0.002793 3.06 3.466 4.228 4.996 5.398 10000 45000 

 residual[15] 10.02 0.5971 0.002793 8.847 9.252 10.01 10.78 11.18 10000 45000 

 residual[16] 12.9 0.6752 0.00305 11.58 12.04 12.9 13.77 14.23 10000 45000 

 residual[17] 1.034 0.6753 0.003059 -0.2899 0.1694 1.032 1.899 2.358 10000 45000 

 residual[18] -0.2066 0.6753 0.003065 -1.531 -1.071 -0.2087 0.6584 1.118 10000 45000 
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Table A.1. Continued. 

 node   mean  sd  MC error 2.5% 10.0% median 90.0% 97.5% start sample 

residual[19] -13.34 0.6754 0.00307 -14.66 -14.2 -13.34 -12.47 -12.01 10000 45000 

 residual[20] 2.39 0.6754 0.003074 1.065 1.525 2.388 3.255 3.715 10000 45000 

 residual[21] -0.9928 0.6754 0.003076 -2.317 -1.858 -0.9949 -0.1276 0.3319 10000 45000 

 residual[22] -9.633 0.6754 0.003077 -10.96 -10.5 -9.635 -8.768 -8.308 10000 45000 

 residual[23] 6.573 0.6754 0.003078 5.249 5.708 6.571 7.439 7.898 10000 45000 

 residual[24] 4.247 0.6754 0.003079 2.922 3.382 4.245 5.112 5.572 10000 45000 

 residual[25] -1.556 0.6754 0.003079 -2.88 -2.421 -1.558 -0.6902 -0.231 10000 45000 

 residual[26] -4.82 0.6754 0.003079 -6.145 -5.686 -4.822 -3.955 -3.496 10000 45000 

 residual[27] -3.276 0.6754 0.00308 -4.601 -4.142 -3.279 -2.411 -1.952 10000 45000 

 residual[28] -2.786 0.6754 0.00308 -4.111 -3.651 -2.788 -1.921 -1.461 10000 45000 

 residual[29] 2.214 0.6754 0.00308 0.8894 1.349 2.212 3.08 3.539 10000 45000 

 tau2  521.9 19.32 0.1084 484.6 497.5 521.6 547.0 560.4 10000 45000 
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Figure A.1. Markov Chain Monte Carlo estimates of the posterior distributions of total mortality of 

blacktip grouper during period 1 (Z1) and period 2 (Z2). 
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Availability of NOAA Technical Memorandum NMFS 
 
Copies of this and other documents in the NOAA Technical Memorandum NMFS series issued 
by the Pacific Islands Fisheries Science Center are available online at the PIFSC Web site 
http://www.pifsc.noaa.gov in PDF format. In addition, this series and a wide range of other 
NOAA documents are available in various formats from the National Technical Information 
Service, 5285 Port Royal Road, Springfield, VA 22161, U.S.A. [Tel: (703)-605-6000]; URL: 
http://www.ntis.gov. A fee may be charged. 
 
Recent issues of NOAA Technical Memorandum NMFS–PIFSC are listed below: 
 
NOAA-TM-NMFS-PIFSC-28 The Hawaiian monk seal in the Northwestern Hawaiian 

Islands, 2004. 
T. C. JOHANOS, and J. D. BAKER 
(October 2011) 

 
29  Stock assessment of the main Hawaiian Islands Deep7   

bottomfish complex through 2010. 
J. BRODZIAK, D. COURTNEY, L. WAGATSUMA, 
J. O’MALLEY, H.-H. LEE, W. WALSH, A. ANDREWS, 
R. HUMPHREYS, and G. DINARDO 

                                                (October 2011) 
                                            
                                          30  Spillover effects of environmental regulation for sea turtle 
     protection: the case of the Hawaii shallow-set longline 
                                               fishery.  
    H. L. CHAN, and M. PAN 
                                               (January 2012) 
 
                                          31 The sociocultural importance of spearfishing in Hawaiʻi. 
    B. W. STOFFLE, and S. D. ALLEN 
    (March 2012) 
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